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University of California, Berkeley
Physics 105 Fall 2000 Section 2 (Strovink)

SOLUTION TO PROBLEM SET 3
Solutions by J. Barber and T. Bunn

Reading:
105 Notes 4.1-4.6, 5.1-5.3.
Hand & Finch 1.4, 2.1-2.9, 1.10-1.11

1.
Use the calculus of variations to show that the
shortest distance between two points in three-
dimensional space is a straight line.
Solution:
The distance from point 1 to point 2 along a
curve (x, y(x), z(x)) is just

� =
∫ 2

1

√
dx2 + dy2 + dz2

=
∫ 2

1

√
1 + y′2 + z′2 dx

where y′ means dy/dx.

The variation of this integral is zero (and so
the integral is an extremum) when the Euler-
Lagrange equations

d

dx

(
∂f

∂y′

)
=
∂f

∂y

and
d

dx

(
∂f

∂z′

)
=
∂f

∂y

are satisfied. In our case, these equations are

d

dx

(
y′√

1 + y′2 + z′2

)
= 0

and
d

dx

(
z′√

1 + y′2 + z′2

)
= 0

So the two terms in the parentheses are con-
stants. Call them p and q respectively. Then
our two equations become

p2 + (p2 − 1)y′2 + p2z′2 = 0

and
q2 + q2y′2 + (q2 − 1)z′2 = 0

Solving for y′ and z′ gives

y′ =
p√

1 − p2 − q2 , z′ =
q√

1 − p2 − q2
So y′ and z′ are just constants. But that means
that y(x) and z(x) are just ordinary linear equa-
tions. So our curve is a straight line.

2.
Use the calculus of variations to obtain the func-
tion φ(θ) describing the “great circle” path of
minimum length on the surface of a sphere.
This path connects spherical polar coordinates
(θ1, φ1) with (θ2, φ2), in the general case where
θ1 �= θ2 and φ1 �= φ2. Leave your answer in the
form of an integral equation. [Hint: consider θ
to be a “label” (like time t), and φ to be a coor-
dinate (like q(t)).]
Solution:
In spherical coordinates, an infinitesimal dis-
placement �dl can be written as:

�dl = dr r̂ + r dθ θ̂ + r sin θ dφ φ̂

In the context of this problem, however, we will
be considering a path on the surface of a sphere,
so dr = 0, and r = R = constant. Also,

dφ =
dφ

dθ
dθ = φ′dθ .

Hence, the total path length on the surface of
the sphere between θ1 and θ2 is

l =
∫ θ2

θ1

∣∣∣�dl∣∣∣
= R

∫ θ2

θ1

dθ

√
1 + sin2 θ φ′2
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Calling the integrand L(φ,φ′,θ), we apply the
Euler-Lagrange equation:

d

dθ

∂L
∂φ′

=
∂L
∂φ

d

dθ

(
sin2 θ φ′√

1 + sin2 θ φ′2

)
= 0

sin2 θ φ′√
1 + sin2 θ φ′2

= c

where c is a constant of integration. Solving for
φ′ yields

φ′ =
c

sin θ
√

sin2 θ − c2
.

Both sides of this expression can be integrated
from θ1 to θ to obtain

φ(θ) =
∫ θ

θ1

c

sin θ′
√

sin2 θ′ − c2
dθ′ + φ1

where c is chosen so that φ(θ2) = φ2.

3.
Set up and solve the Euler-Lagrange equation for
the Atwood machine, released from rest. (Two
weights m1 < m2 are suspended via a massless
string that is supported by a pulley in the form
of a disk of radius R and mass M . The string
moves without slipping on the pulley.)

Use the height y(t) of the smaller mass as the
generalized coordinate.

Solution:
Let’s choose as our generalized coordinate y, the

distance of mass m1 above its starting point.
Then −y is the distance of m2 above its starting
point, and θ = y/R is the angle through which
the wheel has rotated. The Lagrangian is

L = T − V
= 1

2 (m1 +m2)ẏ2 + 1
2Iθ̇

2 − (m1 −m2)gy

The moment of inertia of a disc is I = 1
2MR

2, so

L = 1
2 (m1 +m2)ẏ2 + 1

4Mẏ
2 − (m1 −m2)gy

Let’s define µ = m1 + m2 + 1
2M and ∆m =

m1 − m2. Then L = 1
2µẏ

2 − ∆mgy, and the

Euler-Lagrange equation ∂L
∂y = d

dt

(
∂L
∂ẏ

)
gives

µÿ = −∆mg

The acceleration is constant: a = −∆m
µ g. So

y = −1
2

∆m
µ
gt2 =

(
m2 −m1

2m1 + 2m2 +M

)
gt2

4.
A chain of mass m and length l lies on a fric-
tionless table. Initially the chain is at rest, with
a length s = s0 of the chain hanging off the ta-
ble’s end. This causes the chain to fall off the
table. The part of the chain that remains on the
table is straight, not coiled.

Using the Euler-Lagrange equation with s as the
generalized coordinate, calculate the motion of
the chain (before it falls off completely). Assume
that the chain remains in contact with the cor-
ner and end of the table as shown (even though
this in fact is true only for the early part of the
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motion).
Solution:
Let’s take the zero point of the potential energy
to be the surface of the table. That way, only
that portion of the chain which is hanging con-
tributes to the potential energy. The Lagrangian
is

L = T − U
=

1
2
mṡ2 +

mg

2l
s2

Applying the Euler-Lagrange equation:

d

dt

(
∂L
∂ṡ

)
=
∂L
∂s

s̈ =
g

l
s

The general solution of which is

s(t) = A sinh
√
g

l
t+B cosh

√
g

l
t

where A and B are constants. We determine A
and B using our boundary conditions, s(0) = so
and ṡ(0) = 0, to get

s(t) = so cosh
√
g

l
t

5.
A bead of mass m moves inside a thin hoop-
shaped pipe of average radius b, also of mass m.
The pipe has a frictionless interior, so that the
bead moves freely within the circumference of
the hoop. But the coefficient of friction between
the floor and the pipe’s exterior is large, so that
the hoop rolls on the floor without slipping.

The bead is released from rest at the top of the
hoop. When the bead has fallen halfway to the
floor, how far to the side will the hoop have
moved?
Solution:
Let’s take as our generalized coordinates θ, the
angle of the bead from the top of the hoop, and
x, the sideways distance that the center of the
hoop has moved from its starting point. We’ll
assume that the bead falls clockwise, for which
we’ll define θ to be positive, and we’ll take x
to be positive in the left-hand direction. The
kinetic energy is

T = Thoop + Tbead

Thoop =
1
2
mẋ2 +

1
2
mb2

(
ẋ

b

)2

= mẋ2

Tbead =
1
2
m

(
(−ẋ+ bθ̇ cos θ)

2
+ (−bθ̇ sin θ)

2
)

=
m

2

(
ẋ2 + b2θ̇2 − 2bẋθ̇ cos θ

)
T = m

(
3
2
ẋ2 +

1
2
b2θ̇2 − bẋθ̇ cos θ

)

If we take the zero of the potential energy to be
at the center of the hoop, then only the bead
has potential energy.

U = mgb cos θ

Thus the Lagrangian is

L = T − U

= m

(
3
2
ẋ2 +

1
2
b2θ̇2 − b cos θ(mg + ẋθ̇)

)

Applying the Euler-Lagrange equation to the
coordinate x:

d

dt

(
∂L
∂ẋ

)
=
∂L
∂x

d

dt

(
3ẋ− bθ̇ cos θ

)
= 0

3ẋ− bθ̇ cos θ = c1 (a constant)
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By the initial conditions, ẋ(0) = θ̇(0) = 0,
c1 = 0.

3ẋ− bθ̇ cos θ = 0
d

dt
(3x− b sin θ) = 0

3x− b sin θ = c2 (c2 = 0 also)

x =
1
3
b sin θ

At θ = π
2 , x = b

3 . The hoop is displaced in the
opposite direction from that of the bead.

6.
At t = 0, a thin uniform stick, resting on a fric-
tionless floor, is erect and motionless. Let α
represent the angle it makes with the vertical
(initially α = 0).

(a)
Use the Euler-Lagrange equation to obtain an
equation relating α̈ to α and α̇.
Solution:
The height of the center of mass is y = 1

2 l cosα,
so the kinetic energy (including both transla-
tional and rotational terms) is T = 1

2mẏ
2+ 1

2Iα̇
2.

The moment of inertia of a thin stick is I =
1
12ml

2, so T = 1
24ml

2α̇2(1 + 3 sin2 α). The po-
tential energy is V = mgy = 1

2mgl cosα. So L is

L = 1
24ml

2α̇2(1 + 3 sin2 α) − 1
2mgl cosα

The Euler-Lagrange equation for α is

1
4
ml2α̇2 sinα cosα+

1
2
mgl sinα =

1
12
ml2

(
α̈(1 + 3 sin2 α) + 6α̇2 sinα cosα

)
Solving this for α̈ yields

α̈ =
6 g

l sinα− 3α̇2 sinα cosα
1 + 3 sin2 α

(b)
Because the floor is frictionless, total mechani-
cal energy is conserved in this problem. Use this
fact to relate α̇ to α.
Solution:

E =
1
24
ml2α̇2(1 + 3 sin2 α) +

1
2
mgl cosα

=
1
2
mgl = Einitial

α̇2 =
12g
l

1 − cosα
1 + 3 sin2 α

(c)
Use the result of (b) to eliminate α̇ from your
answer to (a), thereby obtaining an equation re-
lating α̈ to α alone. This equation should be
valid for all values of α.
Solution:
Inserting the answer from (b) into the result of
(a), and simplifying, yields

α̈ =
6g
l

sinα

(
1 + 3(1 − cosα)2

(1 + 3 sin2 α)
2

)

(d)
In the limit α� 1, solve the result of (c) for the
motion α(t).
Solution:
When α � 1, we keep only terms to first or-
der in α. In that limit, the expression from (c)
becomes:

α̈ ≈ 6g
l
α

If we take our initial conditions to be α(0) =
αo � 1 and α̇(0) = 0, then the solution to this is

α(t) = αo cosh

√
6g
l
t



5

7.
Continue to consider the stick in the previous
problem. Use the method of Lagrange undeter-
mined multipliers to find the force of constraint
exerted by the floor on the stick, at the instant
before the side of the stick impacts the floor.
Solution:
Let v be the height of the bottom point of the
stick from the floor. Because the stick’s lower
end is always in contact with the ground, we
have the constraint that v = 0. The height of
the CM is now y = v + l

2 cosα.

T =
m

2
ẏ2 +

1
2

(
1
12
ml2

)
α̇2

=
m

8
l2α̇2

(
1
3

+ sin2 α

)
+
m

2
v̇2 − ml

2
v̇α̇ sinα

V = mgy

= mg

(
v +

1
2
l cosα

)

From the equation of constraint, we know that
gv = 1. Applying the Euler-Lagrange equation
to the v coordinate:

d

dt

(
∂L
∂v̇

)
=
∂L
∂v

+ gvλ

d

dt

(
mv̇ − ml

2
α̇ sinα

)
= −mg + Fc

mv̈ − ml

2
(
α̈ sinα+ α̇2 cosα

)
= −mg + Fc ,

where Fc = gvλ is the generalized force of con-
straint. Using the fact that v̈ = v̇ = v = 0, and
the expression for α̈ from 6(c), yields

Fc = mg − ml

2
α̈|α= π

2

= mg − ml

2

(
3
2
g

l

)

=
1
4
mg (upward)

8.
A bead moves under the influence of gravity on
a frictionless surface described by

y = −k2x3 ,

where k is a constant, and x and y are the
horizontal and vertical coordinates.

The bead is released from rest at the origin. Use
the method of Lagrange undetermined multipli-
ers to solve for the coordinate x = x0 at which
it leaves the surface.
Solution:

L = T − U
=

1
2
mẋ2 +

1
2
mẏ2 −mgy

Constraint:

y + k2x3 = 0 (Eq. 3)

dy + 3k2x2dx = 0

⇒ gy = 1, gx = 3k2x2

Applying the Euler-Lagrange equations:

mÿ = −mg + λ (Eq. 1)

mẍ = 3k2x2λ (Eq. 2)

Use (Eq. 3) to eliminate ÿ from (Eq. 1):

ẏ = −3k2x2ẋ

ÿ = −6k2xẋ2 − 3k2x2ẍ

3k2x(xẍ+ 2ẋ2) = g − λ

m
(Eq. 1′)

Use (Eq. 2) to eliminate ẍ from (Eq. 1′):

3k2x

(
3k2x3 λ

m
+ 2ẋ2

)
= g − λ

m
(Eq. 1′′)
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The bead loses contact when λ = 0. Set λ = 0
in (Eq. 1′′), to get:

6k2xẋ2|x1=breakaway = g (Eq. 4)

Use energy conservation, ẋ2 + ẏ2 = −2gy, and
(Eq. 3) to solve for x in terms of ẋ:

ẋ2 + (−3k2x2ẋ)
2

= −2g(−k2x3)

ẋ2 =
2gk2x3

1 + 9k4x4
(Eq. 5)

Substitute (Eq. 5) in (Eq. 4):

6k2x
2gk2x3

1 + 9k4x4
|x1 = g

x1 =
1
k3

1
4


